

BoR (17) 27

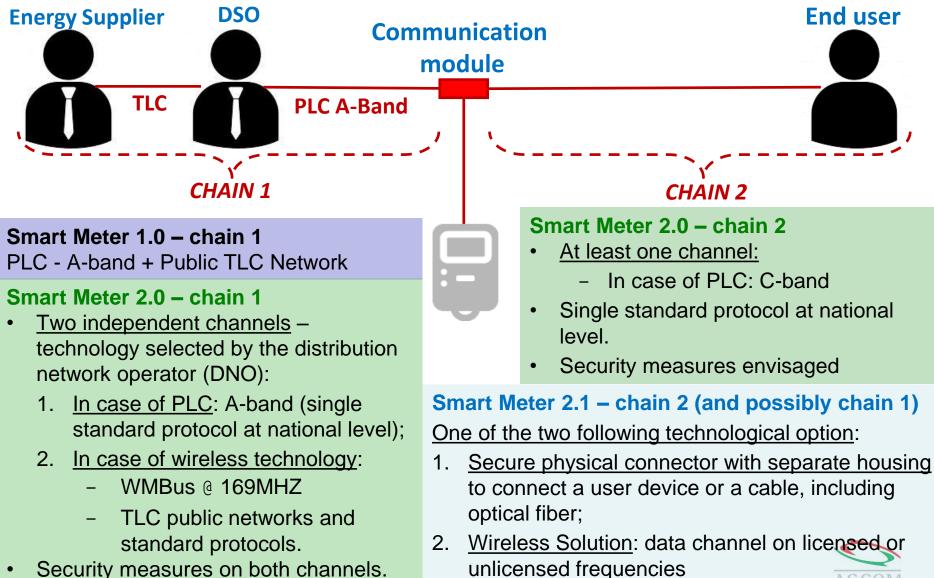
## Smart Meter connectivity solutions

#### BEREC Workshop "Enabling the Internet of Things" Brussels, 1° February 2017

Vincenzo Lobianco

AGCOM

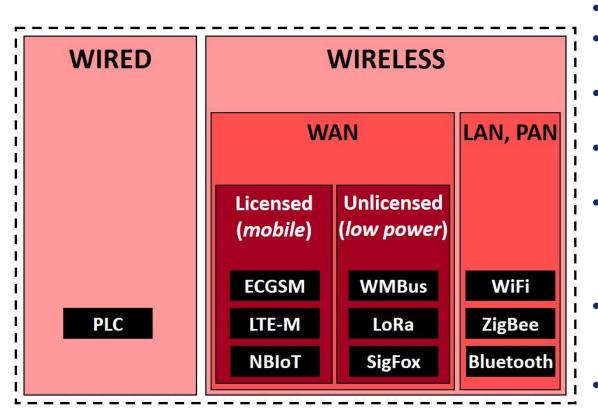
Chief Technological & Innovation Officer


### A Case Study

### Italian NRAs cooperation on smart metering

- AGCOM cooperates with the energy NRA to develop the performance requirements for the next generation of Advanced Metering Infrastructure: Electricity Smart Meter - Generation 2.1
- AGCOM has investigated the connectivity solutions for smart meters and related regulatory issues, with respect to competition issues, performances, network security, data confidentiality and consumer protection




### **Electricity Smart Meters Requirements**



AGCOM

Security measures on both channels.

### **Connectivity solutions**



#### Comparative analysis:

- Operating scenarios
- Standardization and availability of technology
- Architecture, network deployment, scalability
- Coverage, propagation characteristics
- Bit rate, network capacity, latency, transmission mode, support of mobility/nomadism
- Cost of radio access module and network costs (Capex/Opex)
- Battery life, security, quality of service, interoperability.



### Wired Solutions : PLC

- Strengths
  - Consolidated technology, suitable fur current service requirements
  - Very low marginal cost of the network infrastructure Power Line-

#### Weaknesses

- Suitable only for **electricity** smart meters
- Short range, however compatible with the typical extension of national low-voltage networks
- Low level of protection from interferences, on both A-Band and C-Band
- Limited bandwidth (operating frequencies below 150 kHz)
- PLC on Chain 1 not suitable for use cases requiring real time or low latency (due to master-slave architecture)
- National specification in C-Band (for chain 2) just completed. Lack of CENELEC standard



# Cellular based networks on licensed frequencies

 3GPP and GSMA organizations have identified several standards and technical solutions for cellular based services dedicated to M2M, from high to low bit-rate.

|                                        | LTE       | LTE-M     |            | NBIoT         | EC-GSM     |            |
|----------------------------------------|-----------|-----------|------------|---------------|------------|------------|
|                                        | Cat 4     | Cat 1     | Cat 0      | Cat M (e-MTC) | NDIOT      | EC-GSIVI   |
| LTE standardization                    | Release 8 | Release 8 | Release 12 | Release 13    | Release 13 | Release 13 |
| Bandwidth                              | 20 MHz    | 20 MHz    | 20 MHz     | 1.4 MHz       | 0.2 MHz    | 0.2 MHz    |
| Peak bitrate<br>(downlink)             | 150 Mbps  | 10 Mbps   | 1 Mbps     | 1 Mbps        | 0.2 Mbps   | 0.1 Mbps   |
| Peak bitrate (uplink)                  | 50 Mbps   | 5 Mbps    | 1 Mbps     | 1 Mbps        | 0.144 Mbps | 0.1 Mbps   |
| <i>Modem</i> complexity<br>(rif Cat 4) | 100%      | 80%       | 40%        | 20%           | < 15%      | 40%        |

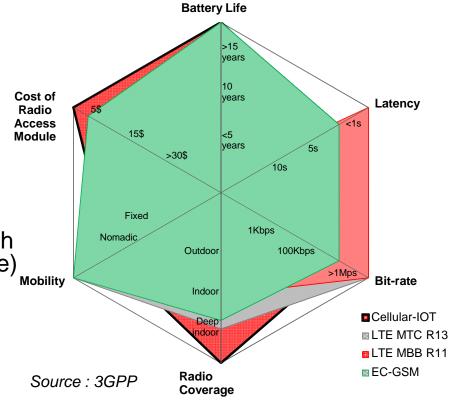


### **Cellular Based Networks**

#### **Strengths**

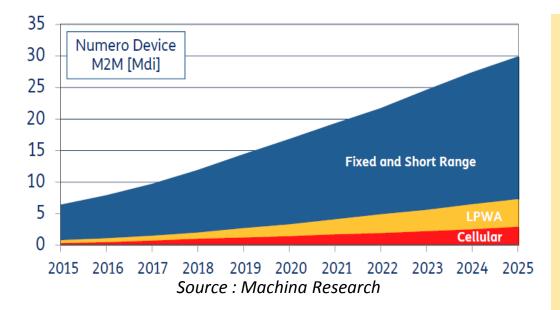
- Coverage of the national territory almost completed
- Use of licensed frequency bands
- Guaranteed QoS SLA
- Standardization by ETSI (2G) or 3GPP (3G / 4G)
- Maturity of the ecosystem (economies of scale)
- Flexibility to support a wide range of applications
- Network security, authentication, privacy of user data
- Service and connectivity provider portability without replacement of the physical SIM, thanks to *embedded* SIM (e-SIM) technology and *Over The Air* (OTA) provisioning platform.

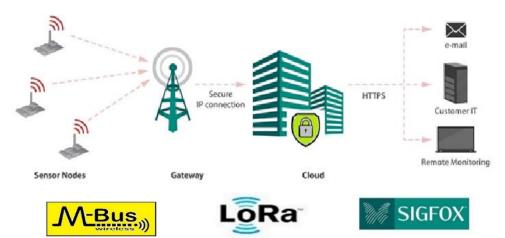
#### Weaknesses


- Costs and battery life for 3G and LTE-M communication modules
- Uncertainty about actual time to market of NBIoT- enabled devices (2017?)

Uncertainty about the time of full availability of embedded SIM technology (e-SIM) and of OTA




### **Cellular Based Networks: NB-IoT**


- The NB-IoT technical solution represents the LTE (4G) evolution suited for several applications, included in particular smart metering.
- Standardization by 3GPP
- Cellular architecture, based on existing LTE infrastructure
- Flexibility of development
- Licensed frequencies
- Up to 100.000 devices per cell
- Scalability
- Extended coverage of up to 20dB with respect to LTE (deep indoor coverage)
- Bit-rate: up to 200 Kbps per device
- Ability to support real time services
- Reduced costs for the Radio Access Module (<5\$)</li>
- Low Power
- Battery life up to 15 years





### **LP-WAN on unlicensed frequencies**





#### Strengths:

- Extensive geographical coverage;
- Low energy consumption;
- High network scalability;
- Low cost of radio access module;
- Low infrastructural costs (infrastructure sharing).

#### Weaknesses:

- Usage of unlicensed frequencies on a nonexclusive, non-interference and non-protected basis;
- Limited interoperability.



### **WMBus**

- ETSI standard (EN13757-4) specifying the RF link between the meters and the central systems
- Defined for 868 MHz band, later extended to 169 MHz and 433 MHz
- 6 data channels (mono and bi-directional) at 4.8 kbps or 2.4 kbps
- Good coverage at 169 MHz (10 km in outdoor LOS) and indoor signal penetration
- Star network topology with a high number of gateways (scarce scalability)
- Multi-service logic (energy + gas)
- Low cost radio access modules, medium to high costs of gateways (economic sustainability in high density areas)
- 10 years battery life



### LoRa

- Proprietary protocols at PHY and DLC layer; open protocols at higher layers (LoRaWAN) by LoRa Alliance
- Unlicensed band at 868 MHz (867-869 MHz) used in Europe
- High scalability: 10 channels on different sub-bands; bitrates ranging from 0.3 kbps to 50 kbps (system adaptive rate)
- Good coverage (15 km in outdoor LOS) and deep indoor signal propagation
- "Star-of-stars" network topology: meters are connected via single hop to gateways, communicating to servers in a cloud platform via backhauling (cellular, WiFi, Ethernet, satellite)
- Cost of radio access module about 8 \$
- Battery life from 10 to 20 years
- Security at network and application layer
- Interoperability between LoRa networks: LoRa Alliance Program for device certification and compliance with LoRaWAN specifications



### SigFox

- Proprietary PHY and upper layer protocols.
- Open API
- Business model based on exclusive license assigned by SigFox to one national operator for 10 years for the management of the Radio Access network
- Unlicensed band at 868 MHz
- Maximum number of 140 messages (of 12 bytes each) per day in uplink - One way data transmission (uplink)
- Good coverage (15 km in outdoor LOS) and deep indoor signal propagation
- Redundancy in space and in the frequency domain to improve interference robustness
- Cost of the radio access module of about \$ 9
- 12 years battery life



### **LAN/PAN on unlicensed frequencies**

- IEEE standard for wireless LAN: extended range Wi-Fi (IEEE 802.11ah) optimized to support an extended coverage range, power efficiency, low cost of user equipment and network scalability.
- IEEE standard for wireless PAN

| STANDARD                     | MAXIMUM<br>COVERAGE | PEAK<br>BITRATE                            | OPERATING<br>FREQUENCIES            | MAXIMUM<br>POWER<br>(IN EUROPE) |
|------------------------------|---------------------|--------------------------------------------|-------------------------------------|---------------------------------|
| ZigBee<br>(IEEE 802.15.4)    | 30 m                | 20 kbit/s<br>40 kbit/s<br>250 kbit/s (LDR) | 868 MHz<br>902 – 928 MHz<br>2,4 GHz | 25 mW<br>20 mW                  |
| Bluetooth<br>(IEEE 802.15.1) | 10 m                | 1 Mbit/s (MDR)                             | 2,4 GHz                             | 100 mW (power<br>class 1)       |



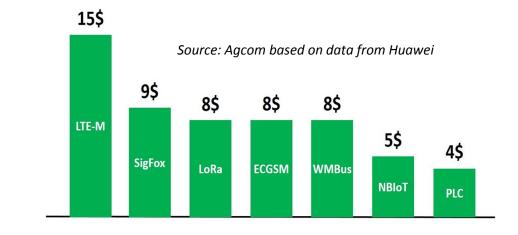
### Preliminary results of technology comparison (1/3)

### Availability

 Wireless solutions on unlicensed frequencies such as WMBus, LoRa and SigFox offer today an undeniable advantage over cellular technologies, such as EC-GSM and NBIoT, in terms of technology availability

### Quality of service

- Technologies operating on licensed frequencies are proved to be "future proof" solutions, able to support current and future requirements for smart meter applications
- Technologies operating on unlicensed frequencies meet current requirements for smart metering applications.
  However QoS cannot be guaranteed over a certain treshold




### Network Interoperability :

- Low power cellular networks operating on licensed band present advantages in terms of openness and interoperability, since they are based on open standards
- A certain degree of interoperability is also guaranteed by network/service providers of unlicensed wireless networks:
  - LoRa Alliance program for certification and compliance to LoRaWAN specifications;
  - SigFox open APIs;
  - Technical specifications for WMBus devices interoperability and interchangeability.



### Preliminary results of technology comparison (3/3)



**Radio Access Module costs** 

#### Infrastructural costs (capex)

- Infrastructure Sharing
  - Possible for EC-GSM and NB-IoT (nationwide coverage)
  - Possible for WMBus, LoRa and SigFox technologies, through sharing of broadcasting sites and coverage extension by a limited number of local gateways
- Service level adoption: P2MP network topologies (including access points/gateways) are more suitable for high density areas.
- Multiservice logic: cost savings could be achieved by e.g. WMBus at 169 MHz





### Thanks for your attention

Vincenzo Lobianco

v.lobianco@agcom.it