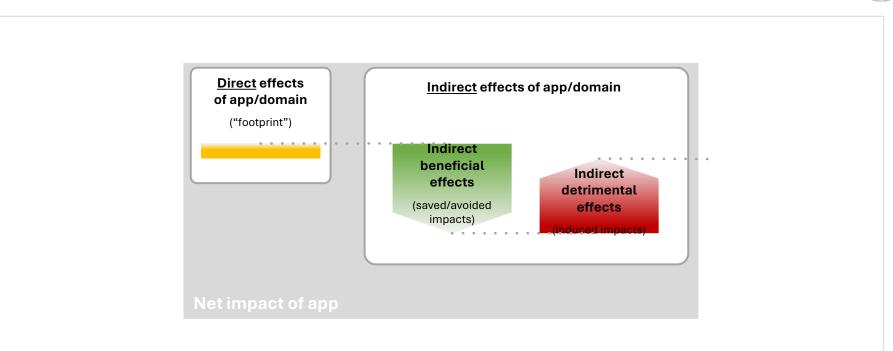
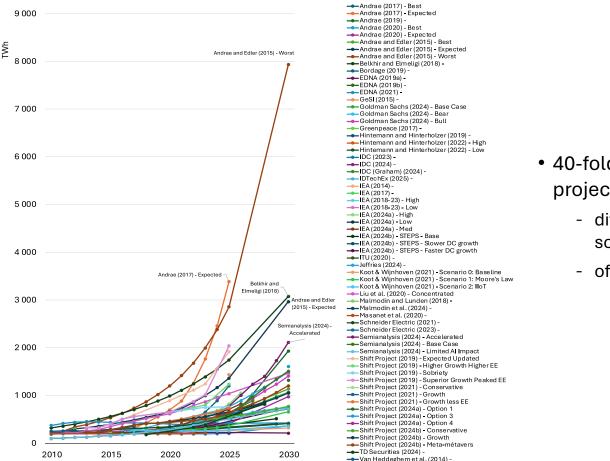

Al impact and possible consequences for service design

Vlad C. Coroamă • Roegen Centre for Sustainability BEREC Workshop on digital ecoservices design • Brussels • 30 April 2025



Assessing the Overall Impact of Computing

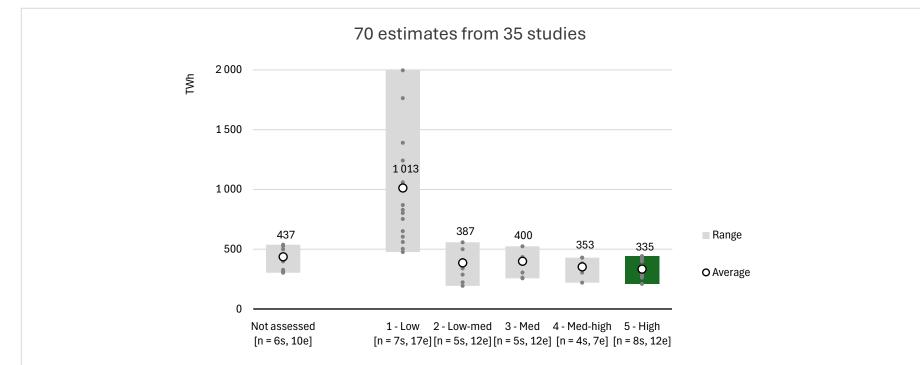
Computing and the Environment: It's complicated



Same principle for one app/service or domain (e.g., AI)

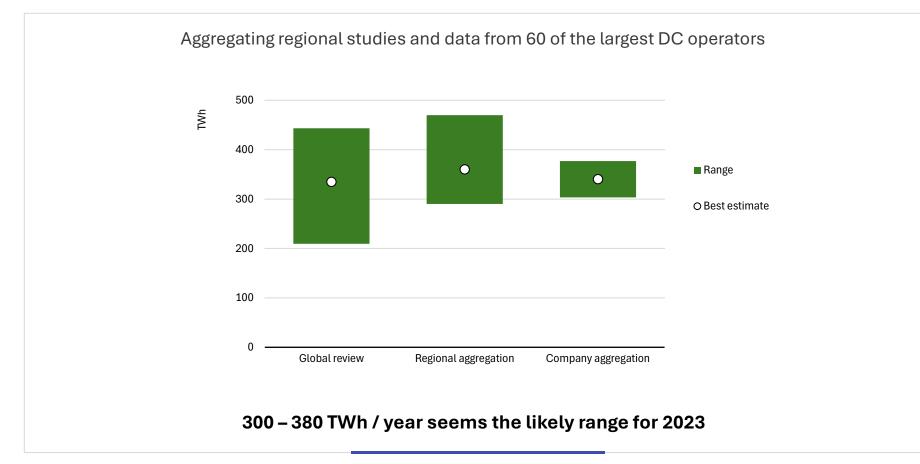
!//S

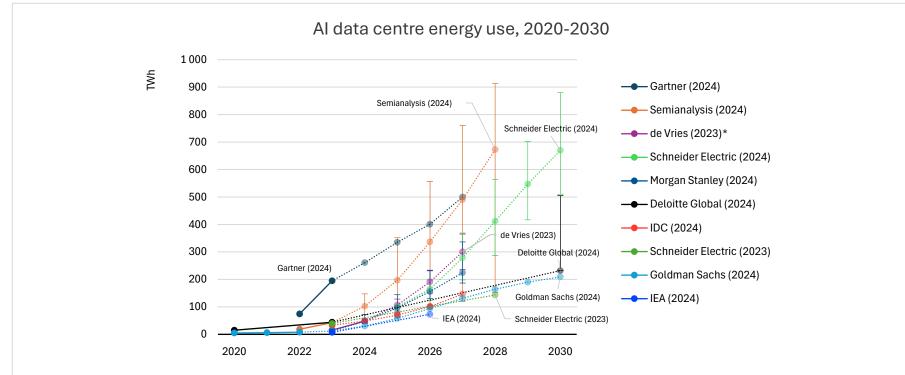
Global DC energy: Estimates since 2010 and projections to 2030



- 40-fold spread for 2030 projections
 - different methods and data sources
 - of different quality

CAS


Correlation between results and study quality


High-end estimates (with the biggest media coverage) correlate with low-quality studies

Alternative assessments

Selected global AI energy use projections

Sustained growth from a low basis, estimates for 2030: 200 – 900 TWh

Our best 2030 guess: ~300 TWh AI, DCs overall 700-900 TWh

RC4S

- How much do 100 TWh/year cost?
 - Nvidia Blackwell B100: TDP 700 W, 35k USD
 - Conservative assumptions
 - all run 24/7
 - 100% capacity
 - continuous power == TDP
 - Energy over 1 year:
 - 6.1 MWh for 35 k USD Capex
 - For 100 TWh
 - 16.4 m B100s required
 - 574 billion USD Capex
 - With conservative assumptions and ignoring
 - electricity costs, wages, building the DC, etc

- Reducing (a bit) conservative assumptions
 - Roughly 1 trillion USD per 100 TWh
 - Likely still conservative estimate
- 2-3 trillion global investment by 2030
 - seems more realistic than 7-9 trillion
- Not yet discussed
 - power production and transport
 - water consumption and scarcity
 - societal externalities
 - resistance and NIMBY
 - geopolitical issues and access to resources

Sanity check: Capex of ~ 1 trillion USD induce about 100 TWh yearly consumption

Indirect Effects and Possible Consequences for Ecodesign

Examples for environmentally beneficial and detrimental effects

Beneficial deployment of AI: Examples

- Efficiency through automatic control
 - data centres
 - building HVAC
 - industrial processes
 - smart farming & precision agriculture
- Modelling and forecast
 - production and consumption in smart grids
 - traffic flows
 - heating systems
 - weather and climate

Detrimental deployment of AI: Examples

- E-commerce & fast fashion
 - increased consumption
 - lower transaction costs
 - reviews & price comparisons
 - time efficient
 - international deliveries
 - increased destruction of goods
- AI for oil & gas drilling
 - cheaper fossil fuels
- Autonomous vehicles
 - see following slides


Beneficial and detrimental consequences often intertwined; assessment extremely challenging

Why autonomous driving will induce more traffic

RC4S

Why am I using public transportation today?

Working on my presentation on the way to the meeting

No parking available at the destination

Relaxing on the way back from the meeting

In a world of autonomous driving, all these reasons no longer exist \rightarrow substitution of AVs for public transportation

(Coroamă and Pargman 2020) Skill rebound: On an unintended effect of digitalization, ICT4S 2020, Bristol, UK.

Methodological considerations: Bottom-up vs. top-down

- Bottom-up method
 - starts from individual application/service
 - identifies causal mechanisms and thus its possible (direct and indirect) effects
 - models each effect
 - aggregates them
- Pros
 - allows for precise assessments
 - evidences causal links \rightarrow explanatory power
- Cons
 - can be resource-intensive
 - causal chains extremely complex and intertwined → effects will be missed
 - bias towards the obvious, not the important

- Top-down method
 - sets system boundary arbitrarily wide
 - identifies macro effects
 - e.g., EE-MRIO, QSD
- Pros
 - the only chance to account for "all" effects
 - may catch the subtle and hard to grasp
- Cons
 - causal links hard to establish
 - system boundaries still a challenge
 - inherently ex-post; ex-ante analyses only based on past experiences
 - resource-intensive (for different reasons)

Conclusions and possible consequences for ecodesign

Direct impact

- Globally, energy not worrisome
 - 1% of global electricity by 2030
 - slightly more than 0.1% of primary energy
- Power density is a problem
 - local power grids (Virginia, Ireland)
 - water consumption if scarcity
- Impacts of AI components' production
 - water and energy for microelectronics
- Design services against
 - GenAI usage (but for small dedicated models)
 - quick device obsolescence

Indirect impact

- Indirect effects usually more important than direct ones
 - both beneficial and detrimental
- Difficult to address
 - various mechanisms, some very subtle
 - large spatial and temporal scope
 - positive and negative deeply intertwined
- Consider usage consequences at design
 - e.g., Sustainability Assessment Framework (SAF) @ Vrije University Amsterdam

• Educate for sustainability

- both students and practitioners

