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Limiting global warming

Limiting warming to 1.5°C and 2°C involves rapid, deep and
in most cases immediate greenhouse gas emission reductions

Net zero CO, and net zero GHG emissions can be achieved through strong reductions across all sectors

a) Net global greenhouse
g0 gas (GHG) emissions

2019 emissions were
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Will Al help to fight climate change?
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Here are 10 ways Al could help fight climate
change

Machine learning has the potential to make some real inroads against our
biggest threat.

By KarenHao June 20,2019

MANAGEMENT

I Dive in to discover why.

“If we have to spend even 1%
of the world’s electricity
training powerful Al, and that
Al helps us figure out how to
get to non-carbon-based
energy or to do carbon

Sam Altmoh believes Al will
change the world (and everything capture better, that would be

else)

by Brion Eastwood | Moy 8, 2024

a massive win,” —Sam
Altman.
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Artificial intelligence (Al) is already making inroads worldwide in health, education and industry, but how can this cutting-edge
technology help the world combat and mitigate the effects of climate change?

The recent launch of the UN-led Al Advisory Body advanced a growing global trend to harness machine learning to find solutions to common
challenges. Al is upping the data crunching game and a growing number of governments, businesses and civil society partners are working
together to reap its many benefits.

That includes speeding up and scaling efforts to realize such global ambitions as the 2030 Agenda and its 17 Sustainable Development Goals
(SDGs), which serve as the world's blueprint to make the planet greener, cleaner and fairer.

Ahead of the latest UN Climate Change Conference # (COP 28), which begins at the end of November in Dubai, UN News looks at how Al
helps the world, from communities to corporations to law makers, tackle climate change:




Will Al hurt the climate?
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Training a single Al model canemit as much
carbon as five cars in their I|fet|mes

Deep learning has a terrible carbon footprint.

By KarenHao

i Reuters

BY SASHA LUCCIONI SCIENCE OEC 18, 202¢ 4:80 AN

Generative Al and Climate
Change Are on a Collision

Course

From energy to resources, data centers have grown
too greedy.

June 6,2019

World v Business v Markets v Sustainability v Legal v ingvi v e Mo

Q_ Popular  Latest  Newsletters The Atlantic sign In

OpenAl CEO Altman says at Davos future
Al depends on energy breakthrough

By Reuters

Microsoft’s Hypocrisy on Al

Can artificial intelligence really enrich fossil-fuel companies and fight
January 16, 2024 6:39 PM GMT+1 - Updated a year ago i Aa | | < climate change at the same time? The tech giant says yes.

By Karen Hao
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How Al affects greenhouse gas emissions
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How Al affects greenhouse gas emissions
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Computing-related
impacts

Operational and embodied

. e

ML algorithm
Inference, training, development
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Impacts from Al computation & hardware
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Computing-related emissions from Al
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Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Nature Climate Change, 1-10.




Inference Is important

* Inference energy costs may
outweigh training over time

* DeepSeek may be more efficient
In training than other large
language models (LLMs)

* Unclear how inference compares
to other LLMs because of “chain
of thought” approach in
reasoning models

* More and longer outputs before
final answer

What is meant by inference in machine learning?

& Thought for 26 seconds »~

Okay, the user previously asked about the general definition of inference and now is specifically asking about
inference in machine learning. | need to make sure | connect the current answer to the previous one but focus on

the ML context.

First, | should start by defining inference in ML. The user might be familiar with the training phase, so contrasting
training with inference would help. | remember that in ML, inference is when the model makes predictions on new

data after being trained.

I need to break down the components. Maybe explain the process step-by-step: training the model, then using it
to predict. Use a simple example like image classification. The example with the cat image could be good because

it's relatable.

The user might be interested in how inference works technically. Mentioning input data passing through the
model's layers to produce an output would clarify the technical side. Also, different types of models (classification,

regression) have different inference outputs. Including examples of each would make it clearer.

Applications are important too. The user might want to know real-world uses. Listing areas like computer vision,

NLP, recommendation systems, healthcare, etc., shows the practicality. Maybe explain each briefly to show variety.

| should also cover the key aspects of inference. Performance metrics like latency and throughput matter,

especially in production. Scalability is another point—how models handle many requests. Resource efficiency is



Computing-related
emissions from inference

 Numbers on the right are from smaller
open-source models and lower bound.

Al Act: Inference energy reporting for
proprietary GPAI models in Code of
Practice

* (Generative tasks are more energy-
Intensive compared to discriminative
tasks.

« Tasks involving images are more
energy-intensive compared to those
involving text.

« Using general-purpose Al (GPAI) for
discriminative tasks is more energy-
intensive compared to task-specific

models.
Source: https://www.nature.com/articles/d41586-025-00616-z

HOW MUCH ENERGY DOES Al USE?

The Al Energy Score project tested dozens of artificial-intelligence models to
estimate how much energy they consume when performing various tasks. Plotting
the energy required to perform a task 1,000 times shows that energy use varies
greatly depending on the task and the model.
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Computing-related emissions from Al
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Total annual computing-related energy consumption from Al
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Electric, 2024; De Vries, 2023; IEA, 2024; Morgan Stanley, 2024; Goldman Sachs, 2024; Semianalysis, 2024

Comparison

Global electricity
consumption 2023:
29,479.05 TWh

Total electricity

consumption in 2023:

* |ow-income countries
2023:126.35 TWh

* United States:
4,249.05 TWh

Source: Our World in Data

12



How Al affects greenhouse gas emissions
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How Al affects greenhouse gas emissions

System-level
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Resources

SURVEY OPEN ACCESS

Tackling Climate Change with Machine Learning

Authors: 6 David Rolnick, Priya L. Donti, Lynn H.
Kris Sankaran, Andrew Slavin Ross, Nikola Miloj
Alexandra Sasha Luccioni, Tegan Maharaj, Evan

Carla P. Gomes, Andrew Y. Ng, Demis Hassabis,

@ Yoshua Bengio (Less) Authors Info & Claims
ACM Computing Surveys, Volume 55, Issue 2 « March 2023

Online: 07 February 2022 Publication History

nature > perspectives > article

Perspective | Published: 13 February 2019

Yineg f =

Article

Annual Review of Environment and Resources

Machine Learning for

n 8 L 11

A systematic map of machine learning in urban climate

change mitigation

Marie Josefine Hintz' ORCID  Email
Nikola Milojevic-Dupont?  ORCID
Felix Creutzig? ORCID

Lynn Kaack®

" Technical University Berlin,

2 Mercator Research Institute on Global Commons and Climate Change,

3 Hertie School

This is a preprint; it has not been peer reviewed by a journal.

https://doi.org/10.21203/rs.3.rs-4242075/V1
This work is licensed under a CC BY 4.0 License

Deep learning and process understanding for data-

driven Earth system science

Markus Reichstein 9, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim Denzler, Nuno

Carvalhais & Prabhat

Nature 566, 195-204 (2019) | Cite this article

121k Accesses | 2566 Citations | 404 Altmetric | Metrics

1ergy Systems

7ico Kolter!?

2 Mellon University, Pittsburgh, Pennsylvania 15213,
‘olicy, Carnegie Mellon University, Pittsburgh,

’ittsburgh, Pennsylvania 15222, USA

Technological

‘orecasting and Social Change s aume
slume 180, July 2022, 121662

al intelligence for climate

change adaptation

Walter Leal Filho @, Tony Wall , Serafino Afonso Rui Mucova ¢, Gustavo J. Nagy €,

Abdul-Lateef Balogun fg Johannes M. Luetz "', Artie W. Ng k Marina Kovaleva ! & &,

Fardous Mohammad Safiul Azam ™, Fatima Alves ", Zeus Guevara ° P, Newton R Matandirotya 9,

Antonis Skouloudis , Asaf Tzachor !, Krishna Malakar ¥, Odhiambo Gandhi ¥

Show more v

+ Add to Mendeley o Share

95 Cite

https://doi.org/10.1016/j.techfore.2022.121662 2

Get rights and content 2




ML for district energy

Motivation: District heating
systems for use of waste heat

Application: Forecasting heat
demand for better scheduling of
efficient production units

ML: Sequence prediction based on
heat generation and metering and
environmental data

LoRa

Ongoing
production data Crid data (live, 15
data (daily) minutes) Weather data
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Data-Driven Bicycle Volume Extrapolation

Predicting daily and average annual daily street-level bicycle
volumes using machine learning and various public data sources
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Role of Al for reducing emissions

Role of ML GHG emissions impact

Data mining and remote sensing Policy design, monitoring, and enforcement (for example, GHG tracking, infrastructure maps)

clerated experimentatios ) . )
RD&D for low-carbon technologies (for example, photovoltaics, batteries)

Fast approximate simulation
Planning and design of relevant systems (for example, urban infrastructure, carbon markets)
Forecasting

System operatias - , g > iss-clectricity grids)

System optimization and control

Accelerating emissions-intensive activities (for example, oil and gas exploration, cattle farming)

Predictive maintenance

Kaack, L. H., Donti, P. L., Strubell, E., Kamiya, G., Creutzig, F., & Rolnick, D. (2022). Aligning artificial intelligence with climate 18
change mitigation. Nature Climate Change, 1-10.



The system perspective

 Where i1s most Al
a p p l | e d? Al adoption by industry and function, 2023

Source: McKinsey & Company Survey, 2023 | Chart: 2024 Al Index report
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Al for sustainability applications need to scale

» Without deployment at scale in sectors like energy,
transportation or agriculture, Al will not reduce emissions
(barriers to deployment)

« Where Al is applicable, it Is only one piece of the puzzle
that needs to integrate with existing technologies and
processes

« Many Al applications are not market-ready (yet)

» Benefits and costs are poorly understood - need for more
pilot projects

 Different collaboration and implementation models - need
for best practices

20



Conclusion

GHG
emissions
potential

Direct/ computing-
related

* Large uncertainty about
current and future
emissions effects

 LLMs have an energy
problem - and
contribute little so far to
climate action

Indirect/
application-
related positive

Indirect/
application-related
negative

21



Climate Change Al

Catalyzing impactful work at the intersection of climate change and Al

Workshops at main Al
conferences AT
$4MM Innovation Grants L e
Program (374 round) A
Summer schools 2022-24
Policy advice and events at
UNFCCC climate conferences
Monthly newsletter

Community platform

learning.

www.climatechange.ai
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NI Hertie School

Thank youl

Contact

Al and Climate Technology Policy Group
Lynn Kaack

Assistant Professor at Hertie School of Governance

Co-founder and Chair of Climate Change Al

Homepage: https://lynnkaack.com

E-mail: kaack@hertie-school.org

www.climatechange.ai
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https://lynnkaack.com/
http://www.climatechange.ai/
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