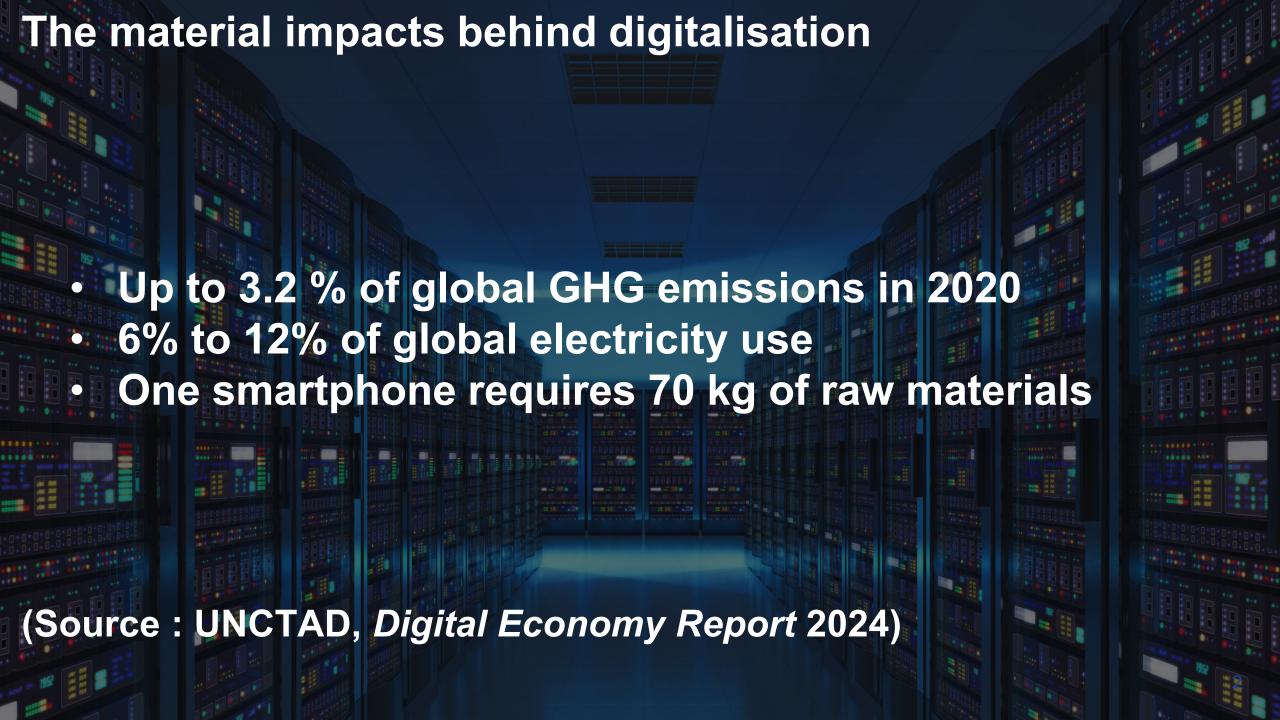


WG Sustainability


External workshop on digital services ecodesign for greener networks and ICTs

Co-Chairs introduction

Maria Sarantopoulou (EETT)
Tom Nico (Arcep)

April 30th, 2025

BEREC's commitment to reduce the environmental footprint of electronic communications and ICTs 1/2

In 2020, BEREC included in its 5-year strategy a new focus on sustainability to contribute to ICT-related goals of the Green Deal and UN Agenda 30. Four key areas of actions detailed in its <u>first report</u> on sustainability:

Data availability and common indicators for the telecom and ICTs: Sharing of experiences (workshop on September 11th) and contribution to DG Connect and JRC work for a CoC on ECN/ECS sustainability (JRC first study published in 2024).

Use of existing regulatory tools for sustainability purposes: <u>Inputs</u> to EC public consultation on the needs of digital infrastructures and ongoing work on infrastructure sharing.

BEREC's commitment to reduce the environmental footprint of electronic communications and ICTs 2/2

3

Encouraging environment-friendly and resource-efficient practices among digital players: 2024 BEREC <u>High level position</u> on AI and virtual words.

4

Contributing to the empowerment of end users through information on ICT products: 2024 BEREC Report on ICT Sustainability for End-Users and communication campaign.

Understanding the environmental footprint of digital technologies

- The entire value chain should be considered because there is an interdependence between the three tiers of digital technologies and the digital services they support: their dynamics influence each one another
- Impact of digital services' growth on data traffic and necessary data centres (ex: generative AI)
- Impact of digital services' on the diversity of devices and their renewal (software obsolescence)

Understanding the environmental footprint of digital

technologies

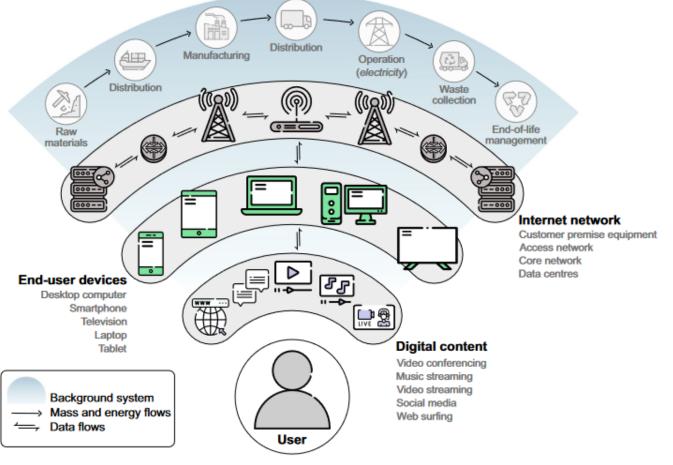
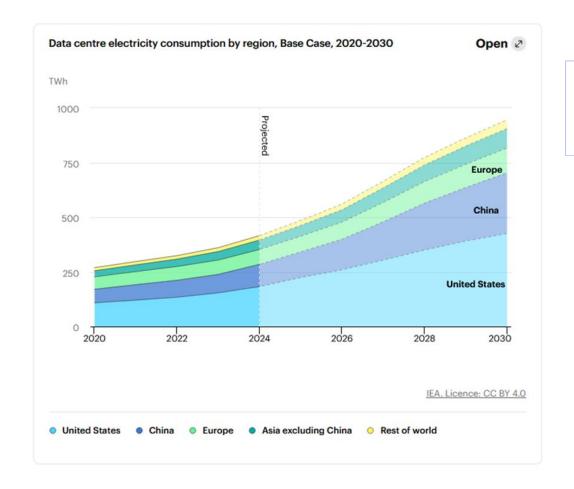


Fig. 1 | Framework for assessing the life cycle environmental impacts of digital content consumption. Digital content includes web surfing, social media, video streaming, music streaming, and video conferencing. Data centres and end-user devices process and store data, while the core and access networks and the

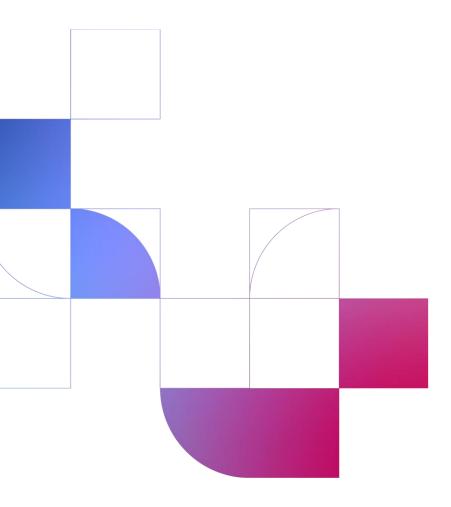
customer premise equipment (e.g., modems and Wi-Fi routers) transfer the data between data centres and users. The background system supplies the equipment (i.e., end-user devices, modems, servers, etc.) and electricity necessary for operation. The icons used in the figure are designed by Freepik.

High-Impact Digital Services: What's Driving ICT Footprint?


 Fig. Video Streaming - 60%+ of global internet traffic - 1h HD = 30- 55g CO₂ equiv - Pushes CDN + data center demand 	 Server Load High energy demand Wide environmental impact due to mainstream usage
Cloud Gaming - Consumes 5-20GB of data per hour - Needs low latency + Graphics Processing Unit (GPU)	
 Artificial Intelligence High training + inference power Integrated in many apps 	Intensive compute Data center reliance Device renewal due to new Al features
Cloud ComputingConstant server useOften opaque to users	△ Always-on impact☑ Shared but hidden environmental costs
Music Streaming - 24/7 habits, high-bitrate audio - Smart speaker usage	Continuous data flow Hidden "always-on" energy
Social Media - Autoplay, scroll, updates - Al for content curation	Device drain Software-driven obsolescence

The environmental footprint of digital services: the GenAl example

- The International Energy Agency (IEA) projects that electricity demand from data centres worldwide is set to more than double by 2030 to around 945 terawatt-hours (TWh), slightly more than the entire electricity consumption of Japan today.
- Al is projected to be the primary driver of this increase, with electricity demand from Al-optimised data centres projected to more than quadruple by 2030.
- In 2024, global electricity consumption by data centres is estimated at 415 TWh, or 1.5% of global electricity consumption for all sectors combined.
 Over the last 5 years, this represents an average increase of 12% per year.


Conclusions

- Devices manufacturing and energy consumption from infrastructures continue to rise due to increase in digital usage
- Sustainability is essential for future technological acceptability and availability of ICT
- Study the positive indirect effects of digital technologies on other sectors and of rebound effects in other industries related to ICT
- Collective efforts and actions are needed for sustainable by design ICTs, and especially for the ecodesign of digital services

THANK YOU!

